Keras Crash Cource
- 딥러닝과 관련된 여러가지를 Keras, Tensorflow로 학습하기 위해 제작하였습니다.
- 주로 이미지 분류를 수행하는데 활용되는 여러 기술을 위주로 작성되어 있습니다.
Requirements
- tensorflow==2.6.0 (최소 2.4.0 이상)
- keras==2.6.0
Objectives
- Ch1. Activations, Metrics, Optimizer and Loss Function
[Ch2. Bayesian Model Space]- Ch3. Basic Tensorflow
- Ch4. Basic Tensorflow Layers
- Ch5. Sequential Model
- Ch6. Functional API Model
- Ch7. Subclass API Model
- Ch8. Model of Keras Application
- Ch9. Model Training 1 - compile, fit
- Ch10. Callbacks
- Ch11. Data Generator - flow, from_directory
- Ch12. Custom Data Loader 1 - Pre-load Data
- Ch13. Custom Data Loader 2 - Batch-load Data
- Ch14. Model Training 2 - gradientTape
- Ch15. MIL - timedistributed layer
- Ch16. Custom Callbacks
- Ch17. Custom Layers
- Ch18. Custom Loss, Custom Metric
- Ch19. Special (History, Save, etc)
Author (저자)
Junseo Ko (고준서)
- Department of Applied Artificial Intelligence, Sungkyunkwan University
- Data Science & Artificial Intelligence Lab.
- RAONDATA
Table of contents
- Ch1. Basic Functions
- Ch3. Basic Tensorflow
- Ch4. Basic Keras Layers
- Ch5. Sequential Model of Keras
- Ch6. Funtional Model of Keras
- Ch7. Subclass API Method
- Ch8. Model of Keras Application
- Ch9. Model Training 1 - compile, fit
- Ch10. Callbacks
- Ch11. ImageDataGenerator - flow, from_directory
- Ch12. Custom Data Loader 1 - Pre-load Data
- Ch13. Custom Data Loader 1 - Pre-load Data
- Ch14. Gradient Tape
- Ch15. timedistributed layer
- Ch16. Custom Callbacks
- Ch17. Custom Layer
- Ch18. Custom Loss, Metrics
- Ch19. Special Methods
- Ch20. Special Session